|
|
lucid
0.0.2
Lifting-based Uncertain Control Invariant Dynamics
|
Collection of utilities used to score the accuracy of estimators. More...
Typedefs | |
| using | Scorer = std::function<double(const Estimator&, ConstMatrixRef, ConstMatrixRef)> |
| Function type used to score the estimator. | |
| using | ScorerType = double (*)(const Estimator&, ConstMatrixRef, ConstMatrixRef) |
| Function pointer type used to score the estimator. | |
Functions | |
| double | r2_score (ConstMatrixRef x, ConstMatrixRef y) |
| Score the closeness between x and y assigning it a numerical value. | |
| double | r2_score (const Estimator &estimator, ConstMatrixRef evaluation_inputs, ConstMatrixRef evaluation_outputs) |
| Score the estimator assigning a numerical value to its accuracy in predicting the evaluation_outputs given the evaluation_inputs. | |
| double | mse_score (ConstMatrixRef x, ConstMatrixRef y) |
| Compute the mean squared error (MSE) between x and y. | |
| double | mse_score (const Estimator &estimator, ConstMatrixRef evaluation_inputs, ConstMatrixRef evaluation_outputs) |
| Compute the mean squared error (MSE) score of the estimator on the given evaluation data. | |
| double | rmse_score (ConstMatrixRef x, ConstMatrixRef y) |
| Compute the root mean squared error (RMSE) score of the closeness between x and y. | |
| double | rmse_score (const Estimator &estimator, ConstMatrixRef evaluation_inputs, ConstMatrixRef evaluation_outputs) |
| Compute the root mean squared error (RMSE) score of the estimator on the given evaluation data. | |
| double | mape_score (ConstMatrixRef x, ConstMatrixRef y) |
| Compute the mean absolute percentage error (MAPE) score of the closeness between x and y. | |
| double | mape_score (const Estimator &estimator, ConstMatrixRef evaluation_inputs, ConstMatrixRef evaluation_outputs) |
| Compute the mean absolute percentage error (MAPE) score of the estimator on the given evaluation data. | |
Collection of utilities used to score the accuracy of estimators.
| using lucid::scorer::Scorer = std::function<double(const Estimator&, ConstMatrixRef, ConstMatrixRef)> |
Function type used to score the estimator.
| estimator | Estimator object to score |
| evaluation_inputs | \( n \times d_x \) matrix of row vectors in the input space \( \mathcal{X} \) |
| evaluation_outputs | \( n \times d_y \) matrix of row vectors in the output space \( \mathcal{Y} \) |
| using lucid::scorer::ScorerType = double (*)(const Estimator&, ConstMatrixRef, ConstMatrixRef) |
Function pointer type used to score the estimator.
| estimator | Estimator object to score |
| evaluation_inputs | \( n \times d_x \) matrix of row vectors in the input space \( \mathcal{X} \) |
| evaluation_outputs | \( n \times d_y \) matrix of row vectors in the output space \( \mathcal{Y} \) |
| double lucid::scorer::mape_score | ( | const Estimator & | estimator, |
| ConstMatrixRef | evaluation_inputs, | ||
| ConstMatrixRef | evaluation_outputs ) |
Compute the mean absolute percentage error (MAPE) score of the estimator on the given evaluation data.
Given the evaluation inputs \( x = \{ x_1, \dots, x_n \} \), where \( x_i \in \mathcal{X} \subseteq \mathbb{R}^{d_x}, 0 \le i \le n \), we want to compute the mean absolute percentage error of the model's predictions \( \hat{y} = \{ \hat{y}_1, \dots, \hat{y}_n \} \) where \( \hat{y}_i \in \mathcal{Y} \subseteq \mathbb{R}^{d_y}, 0 \le i \le n \), with respect to the true outputs \( y = \{ y_1, \dots, y_n \} \) where \( y_i \in \mathcal{Y} , 0 \le i \le n \). The score belongs in the range \( [-\infty, 0 ] \), where \( 0 \) indicates a perfect fit, and more negative values indicate a worse fit.
\[\text{MAPE} = -\frac{1}{n} \sum_{i=1}^n \left| \frac{y_i - \hat{y}_i}{y_i} \right| \]
where \( n \) is the number of rows in the evaluation data. The MAPE score is always non-positive, and a higher value indicates a better fit.
| estimator | estimator to score |
| double lucid::scorer::mape_score | ( | ConstMatrixRef | x, |
| ConstMatrixRef | y ) |
Compute the mean absolute percentage error (MAPE) score of the closeness between x and y.
We are given the set of row vectors \( x = \{ x_1, \dots, x_n \} \), where \( x_i \in \mathcal{X} \subseteq \mathbb{R}^{d}, 0 \le i \le n \), and the set of row vectors \( y = \{ y_1, \dots, y_n \} \), where \( y_i \in \mathcal{X} \subseteq \mathbb{R}^{d}, 0 \le i \le n \). The score belongs in the range \( [-\infty, 0 ] \), where \( 0 \) indicates no distance (i.e., perfect predictions) and more negative values indicate more distance.
\[\text{MAPE} = -\frac{1}{n} \sum_{i=1}^n \left| \frac{y_i - x_i}{y_i} \right| \]
where \( n \) is the number of rows in the evaluation data. The MAPE score is always non-positive, and a higher value indicates a better fit.
| x | \( \texttip{n}{Number of samples} \times \texttip{d}{Dimension of the vector space} \) matrix of row vectors |
| y | \( \texttip{n}{Number of samples} \times \texttip{d}{Dimension of the vector space} \) matrix of row vectors |
| double lucid::scorer::mse_score | ( | const Estimator & | estimator, |
| ConstMatrixRef | evaluation_inputs, | ||
| ConstMatrixRef | evaluation_outputs ) |
Compute the mean squared error (MSE) score of the estimator on the given evaluation data.
Given the evaluation inputs \( x = \{ x_1, \dots, x_n \} \), where \( x_i \in \mathcal{X} \subseteq \mathbb{R}^{d_x}, 0 \le i \le n \), we want to compute the mean squared error of the model's predictions \( \hat{y} = \{ \hat{y}_1, \dots, \hat{y}_n \} \) where \( \hat{y}_i \in \mathcal{Y} \subseteq \mathbb{R}^{d_y}, 0 \le i \le n \), with respect to the true outputs \( y = \{ y_1, \dots, y_n \} \) where \( y_i \in \mathcal{Y} , 0 \le i \le n \). The score belongs in the range \( [-\infty, 0 ] \), where \( 0 \) indicates a perfect fit, and more negative values indicate a worse fit.
\[\text{MSE} = -\frac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2 \]
where \( n \) is the number of rows in the evaluation data. The MSE score is always non-positive, and a higher value indicates a better fit.
| estimator | estimator to score |
| evaluation_inputs | \( \texttip{n}{Number of samples} \times \texttip{d_x}{Dimension of the input vector space} \) evaluation input data |
| evaluation_outputs | \( \texttip{n}{Number of samples} \times \texttip{d_y}{Dimension of the output vector space} \) evaluation output data |
| double lucid::scorer::mse_score | ( | ConstMatrixRef | x, |
| ConstMatrixRef | y ) |
Compute the mean squared error (MSE) between x and y.
We are given the set of row vectors \( x = \{ x_1, \dots, x_n \} \), where \( x_i \in \mathcal{X} \subseteq \mathbb{R}^{d}, 0 \le i \le n \), and the set of row vectors \( y = \{ y_1, \dots, y_n \} \), where \( y_i \in \mathcal{X} \subseteq \mathbb{R}^{d}, 0 \le i \le n \). The score belongs in the range \( [-\infty, 0 ] \), where \( 0 \) indicates no distance (i.e., perfect predictions) and more negative values indicate more distance.
\[\text{MSE} = -\frac{1}{n} \sum_{i=1}^n (y_i - x_i)^2 \]
where \( n \) is the number of rows in the evaluation data. The MSE score is always non-positive, and a higher value indicates a better fit.
| x | \( \texttip{n}{Number of samples} \times \texttip{d}{Dimension of the vector space} \) matrix of row vectors |
| y | \( \texttip{n}{Number of samples} \times \texttip{d}{Dimension of the vector space} \) matrix of row vectors |
| double lucid::scorer::r2_score | ( | const Estimator & | estimator, |
| ConstMatrixRef | evaluation_inputs, | ||
| ConstMatrixRef | evaluation_outputs ) |
Score the estimator assigning a numerical value to its accuracy in predicting the evaluation_outputs given the evaluation_inputs.
Given the evaluation inputs \( x = \{ x_1, \dots, x_n \} \), where \( x_i \in \mathcal{X} \subseteq \mathbb{R}^{d_x}, 0 \le i \le n \), we want to give a numerical score to the model's predictions \( \hat{y} = \{ \hat{y}_1, \dots, \hat{y}_n \} \) where \( \hat{y}_i \in \mathcal{Y} \subseteq \mathbb{R}^{d_y}, 0 \le i \le n \), with respect to the true outputs \( y = \{ y_1, \dots, y_n \} \) where \( y_i \in \mathcal{Y} , 0 \le i \le n \). The score is computed as the coefficient of determination, also known as \( R^2 \) score, defined as
\[R^2 = 1 - \frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{\sum_{i=1}^n (y_i - \bar{y})^2} \]
where \( \bar{y} \) is the mean of the true outputs \( y \) and the variance of the true output, \( \sum_{i=1}^n (y_i - \bar{y})^2 \), is greater than 0. The score belongs in the range \( [-\infty, 1 ] \), where \( 1 \) indicates a perfect fit, and \( 0 \) indicates that the model is no better than simply predicting the expected value of the true outputs.
| estimator | estimator to score |
| evaluation_inputs | \( \texttip{n}{Number of samples} \times \texttip{d_x}{Dimension of the input vector space} \) evaluation input data |
| evaluation_outputs | \( \texttip{n}{Number of samples} \times \texttip{d_y}{Dimension of the output vector space} \) evaluation output data |
| double lucid::scorer::r2_score | ( | ConstMatrixRef | x, |
| ConstMatrixRef | y ) |
Score the closeness between x and y assigning it a numerical value.
We are given the set of row vectors \( x = \{ x_1, \dots, x_n \} \), where \( x_i \in \mathcal{X} \subseteq \mathbb{R}^{d}, 0 \le i \le n \), and the set of row vectors \( y = \{ y_1, \dots, y_n \} \), where \( y_i \in \mathcal{X} \subseteq \mathbb{R}^{d}, 0 \le i \le n \). The score is computed as the coefficient of determination, also known as \( R^2 \) score, defined as
\[R^2 = 1 - \frac{\sum_{i=1}^n (y_i - x_i)^2}{\sum_{i=1}^n (y_i - \bar{y})^2} \]
where \( \bar{y} \) is the mean of \( y \) and the variance of \( y \), \( \sum_{i=1}^n (y_i - \bar{y})^2 \), is greater than 0. The score belongs in the range \( [-\infty, 1 ] \), where \( 1 \) indicates no distance (i.e., perfect predictions) and \( 0 \) indicates that \( x \) matches the expected value of \( y \).
| x | \( \texttip{n}{Number of samples} \times \texttip{d}{Dimension of the vector space} \) matrix of row vectors |
| y | \( \texttip{n}{Number of samples} \times \texttip{d}{Dimension of the vector space} \) matrix of row vectors |
| double lucid::scorer::rmse_score | ( | const Estimator & | estimator, |
| ConstMatrixRef | evaluation_inputs, | ||
| ConstMatrixRef | evaluation_outputs ) |
Compute the root mean squared error (RMSE) score of the estimator on the given evaluation data.
Given the evaluation inputs \( x = \{ x_1, \dots, x_n \} \), where \( x_i \in \mathcal{X} \subseteq \mathbb{R}^{d_x}, 0 \le i \le n \), we want to compute the root mean squared error of the model's predictions \( \hat{y} = \{ \hat{y}_1, \dots, \hat{y}_n \} \) where \( \hat{y}_i \in \mathcal{Y} \subseteq \mathbb{R}^{d_y}, 0 \le i \le n \), with respect to the true outputs \( y = \{ y_1, \dots, y_n \} \) where \( y_i \in \mathcal{Y} , 0 \le i \le n \). The score belongs in the range \( [-\infty, 0 ] \), where \( 0 \) indicates a perfect fit, and more negative values indicate a worse fit.
\[\text{RMSE} = -\sqrt{\frac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2} \]
where \( n \) is the number of rows in the evaluation data. The RMSE score is always non-positive, and a higher value indicates a better fit.
| estimator | estimator to score |
| evaluation_inputs | \( \texttip{n}{Number of samples} \times \texttip{d_x}{Dimension of the input vector space} \) evaluation input data |
| evaluation_outputs | \( \texttip{n}{Number of samples} \times \texttip{d_y}{Dimension of the output vector space} \) evaluation output data |
| double lucid::scorer::rmse_score | ( | ConstMatrixRef | x, |
| ConstMatrixRef | y ) |
Compute the root mean squared error (RMSE) score of the closeness between x and y.
We are given the set of row vectors \( x = \{ x_1, \dots, x_n \} \), where \( x_i \in \mathcal{X} \subseteq \mathbb{R}^{d}, 0 \le i \le n \), and the set of row vectors \( y = \{ y_1, \dots, y_n \} \), where \( y_i \in \mathcal{X} \subseteq \mathbb{R}^{d}, 0 \le i \le n \). The score belongs in the range \( [-\infty, 0 ] \), where \( 0 \) indicates no distance (i.e., perfect predictions) and more negative values indicate more distance.
\[\text{RMSE} = -\sqrt{\frac{1}{n} \sum_{i=1}^n (y_i - x_i)^2} \]
where \( n \) is the number of rows in the evaluation data. The RMSE score is always non-positive, and a higher value indicates less distance.
| x | \( \texttip{n}{Number of samples} \times \texttip{d_x}{Dimension of the input vector space} \) evaluation input data |
| y | \( \texttip{n}{Number of samples} \times \texttip{d_y}{Dimension of the output vector space} \) evaluation output data |