This document describes the legend all the symbols used in the documentation of the project.
Math symbols
Basic
- \(x, y\): A scalar value.
- \(\boldsymbol{x}, \boldsymbol{y}, \dots\): A vector.
- \(\boldsymbol{A}, \boldsymbol{B}, \dots\): A matrix.
- \(\boldsymbol{A}_{ij}\): The element at row \( i \) and column \( j \) of \(\boldsymbol{A}\).
- \(\boldsymbol{A}_{i:}\): The \( i \)-th row of \(\boldsymbol{A}\).
- \(\boldsymbol{A}_{:j}\): The \( j \)-th column of \(\boldsymbol{A}\).
- \(\boldsymbol{A}^T\): The transpose of \(\boldsymbol{A}\).
- \(\boldsymbol{A}^{-1}\): The inverse of \(\boldsymbol{A}\).
Probability
- \(\mathbb{X}\): Polish sample space.
- \(\mathcal{B}(\mathbb{X})\): Borel \(\sigma\)-algebra on \(\mathbb{X}\).
- \(\mathbb{P}\): Probability measure.
- \(X, Y\): A random variable.
- \(\mathbb{R}\): The set of real numbers.
- \(\mathbb{R}^n\): The set of \( n \)-dimensional real vectors.
- \(\mathbb{R}^{m \times n}\): The set of \(m \times n\) real matrices.
- \(\mathbb{E}[X]\): The expected value of random variable \( X \).
- \(\mathcal{N}(\) \mu \(, \sigma^2)\): Normal distribution with mean \(\) \mu \(\) and variance \(\sigma^2\).
Control
- \(B: \mathbb{X} \times \mathbb{U} \to \mathbb{R}\): Barrier function.
Specific symbols
- \( k \): Kernel function.
- \(\boldsymbol{K}\): Gram matrix, defined as \(\boldsymbol{K}_{ij} = k(\boldsymbol{x}_i, \boldsymbol{x}_j)\).
- \(\boldsymbol{K}_{ij}\): The element at row \( i \) and column \( j \) of \(\boldsymbol{K}\).